System Effectiveness Analysis Simulation (SEAS) Overview

Melissa Wright, 1Lt, USAF
Developmental Planning, Los Angeles AFB
(SMC/XRD)
Phone: (310) 363-5729
E-mail: Melissa.Wright@losangeles.af.mil

Overview

- Need for credible, quantitative military worth analysis is a given
- SEAS:
 - Proper modeling of C4ISR as Prerequisite to Space Worth Analysis
 - Force planning centers around C4ISR issues (eg., Sim Based Acquisition)
 - Non-linear conceptual model of combat is essential
 - Conceptual model framework bridges gaps in DoD community
 - SEAS data model supports non-linear combat
 - Comparison of SEAS “vertical slice” to aggregated, legacy models: very different results
 - Quick Reaction Analysis (QRA) approach—existence proofs of sensitivity to C4ISR
 - Processing, Exploitation, Dissemination (Comm) delay
 - Comm outage
 - Concealment & Deception (SATRAN phasing, decoys)
 - Sensor Cuing
 - Model behavioral/functional validation
 - In detail
 - SEAS unique features
 - Where SEAS fits in DoD set of models
SEAS Unique QRA Features

- Balanced representation of C4ISR functions & “Information War” with weapons effects
 - Dynamic “Tactical Pictures” for each Blue & Red force element
 - Explicit sensor geometries and sensor platform revisit/gap times
 - “On the Fly” Air Tasking Order–diversion with in-flight update
 - Decoy/Deception for high value targets
 - Explicit end-to-end C-3 connections & time lines
 - Modeling of future weapons follows JMEM logic but not limited by historical data (eg., ATCAL tables)
 - Processing delay
 - Commander’s perception vs decision threshold (doctrine/rules)
 - Commander’s orders to field units–planning cycle delay
 - Maneuver warfare via automata rules–emergent behavior
 - Interaction of tactical doctrine & new system capabilities
 - Permits new CONOPs & doctrine to optimize exploitation of space

SEAS Unique QRA Features (2)

- Explores broad scope of outcome space consistent with high risk nature of warfare
 - Multi-run stochastic model for Exploratory Analysis
 - Interface to COTS analysis tools (eg., JMP) for visualizing probabilistic outcomes
 - Feeds response surface method to link architecture MOPs to campaign MOEs

- Architecture consistent with Military Worth Framework
 - Based on widely accepted “Strategy-to-Task” method
 - Interface to Strategy-to-Task MOEs & C4ISR & space system MOPs
 - Balanced context for credible space–air–ground ISR comparison
SEAS Data Model

<table>
<thead>
<tr>
<th>Observe</th>
<th>Orient</th>
<th>Decide</th>
<th>Act</th>
<th>Killed?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURVEY</td>
<td>ASSESS</td>
<td>COMM</td>
<td>MOVE</td>
<td>SUPPLY</td>
</tr>
<tr>
<td>TLE</td>
<td>Delay</td>
<td>Delay</td>
<td>Delay</td>
<td>Delay</td>
</tr>
<tr>
<td>TVE</td>
<td>BDA Delay</td>
<td>(msg loss & link outage determined by MOPs below)</td>
<td>(loc & delay determined by motion MOPs below)</td>
<td>(determined by logistics MOPs below)</td>
</tr>
<tr>
<td>Pd tgt (Dwell)</td>
<td></td>
<td></td>
<td></td>
<td>Aim Point</td>
</tr>
<tr>
<td>Pd decoy (Dwell)</td>
<td></td>
<td></td>
<td></td>
<td>Ballistic CEP</td>
</tr>
<tr>
<td>BDA Prob (TYPE I)</td>
<td></td>
<td></td>
<td></td>
<td>Effect Radius</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>True Tgt Locus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pk</td>
</tr>
</tbody>
</table>

Info Quality
- Range
- BrkRange (Pd rolloff)
- FOV Shape/Orient.
- Revisit (Orbit & Scan)
- Cued Pd & Range incr.
- Tgt Type
- MTI/SAR
- Active/Passive Sensor
- Day/Night
- Cloud Deck
- Hide State 0-2
- Hide State 3

SEAS MOPS

ConstrainTS
<table>
<thead>
<tr>
<th>Designator time</th>
<th>Range</th>
<th>AIR</th>
<th>GND</th>
<th>AIR</th>
<th>GND</th>
<th>AIR</th>
<th>GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max tkt tracks</td>
<td>Msg rate</td>
<td>JIPTL</td>
<td>Speed</td>
<td>Wpn Range</td>
<td>Rate-of-Fire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch detect</td>
<td>Queue size</td>
<td>Tgt Ptry</td>
<td>Speed</td>
<td>-Normal</td>
<td>Use Limit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MaxHops</td>
<td>Wpn Load</td>
<td>Interval</td>
<td>-Base Atk delay</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jammer Rng</td>
<td>Tgt Priority</td>
<td>Deploy</td>
<td>Loiter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reliability</td>
<td>Loiter</td>
<td>MoveTo</td>
<td>Latency Limit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CommOn/Off</td>
<td>Latency Limit</td>
<td>Latency Limit</td>
<td>Wpn left</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TAO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FireWait</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Patrols</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIR
- Divert Rng
- SetEvent
- WaitUntil
- WaitEvent
- OnB Sensr
- OnB Sensr
- Save Wpn
- Coord Fire
- Coord Fire
- Hide State 3

GROUND
- Rearm/Refuel

Blue Font = Info elements propagated via comm links to shooters where effect on attrition occurs

Black Italic Font = Continuously variable MOP constraints which control the flow info elements

Black Regular font = 2 or 3 valued logical constraints which control flow of info elements

Pink Bold font = variables which generate reactive/adaptive behaviors
Simulation Domains

EXPRESSIVENESS

- abstract theories
- conceptual models
- concrete models
- observed world

APPLICATION

- real-world
- small: Ops analysis for exercise support
- medium: NSS, EADSIM
- large: SEAS

SCALE

- high fidelity investigation of specific options
- medium
- large

- abstract mapping of local option-space with cellular automata
- Exploratory Analysis for acquisition planning
- Ops analysis for force sizing
- System & Ops Eval
- Syst. & Ops Concept Expl.
Bottom Line

- SEAS developed for over 5 yrs to meet goals of next generation combat models
 - Guided by Sante Fe Institute Complex Adaptive System concept
 - Consistent with MORS SIMTECH 2007 & "New Sciences" Symposium

- SEAS provides capabilities for C4ISR and Info War analysis not possible with aggregate combat models

"This information is furnished upon condition that it will not be released to another nation without specific authority of the Department of the Air Force of the United States; that it will be used for military purposes only; that individual or corporate rights originating in the information, whether patented or not, will be respected; that the recipient will report promptly to the U.S. any known or suspected compromise; and the information will be provided substantially the same degree of security afforded it by the Department of Defense of the United States. Also, regardless of any other marking on the document, it will not be downgraded or declassified without the written approval of the originating U.S. agency."