DEFENCE

DÉFENSE

Ե

DEFENCE

DÉFENSE

Exploratory Analysis of the Supply Concept

for the Standing Contingency Task Force (SCTF)

Major Bruce Chapman, MSc, CD

Defence Research and Development Canada

¥

Recherche et développement pour la défense Canada

Purpose

- The purpose of this research was to provide insight into the parameters that impact on the ability of a seabase to resupply a landing force.
 - Accomplished by:
 - Investigating the methodologies used by business and military organizations to solve like problems.
 - Discovering and/or developing a tool/tools that would enable the analysis of the deployed support requirements of the SCTF.
 - Using the tool to provide insights into the proposed option.

Outline

- Concepts of Operation and Sustainment of the SCTF
- Conceptual model
- Data and build the model
- Analysis and Conclusions

What is the SCTF?

Amphibious Task Group

Naval Task Group The SCTF, a seaborne fully integrated tactical force at high readiness, will conduct sea based full spectrum operations in a littoral in order to provide timely and positive effect on a developing crisis or conflict.

Landing Force

Support Group

Connectors

•Deploy on 10 days notice

•Support the landing force ashore for 30 days Defence R&D Canada – CORA • R & D pour la défense Canada – CARO

What is the SCTF Support Concept?

- Integral Support will provide three days of supply (DOS) deployed with the fighting force.
- The SCTF Support Group will maintain the three days of supply at the sub-units
 - These concepts have yet to be developed
 - The Future Employment Concept presents the use of push logistics based upon containerization and the MSVS

Issues Examined

- How far to sea can the seabase be and still support the landing force?
- How far inland can the landing force be and still be supported?
- Other issues as they come up.
 - Numbers of transport vehicles in the support group
 - Impact of reduced numbers of connectors
 - Impact of speed of convoys on sustainment system

Data Requirements

• The size of the landing force.

Sub-Unit	# Personnel on Shore	# Vehicles on Shore
LAV Company	148	21
LPV Company 1	148	30
LPV Company 2	148	30
Headquarters	64	14
Reconnaissance	42	13
Engineer	61	16
Artillery	79	28

Data Requirements

- The amount of supplies required ashore.
 - Water
 - 1 DOS Water = # of soldiers × usage per day + # of vehicles x usage per day
 - Food
 - 1 DOS of Rations = # of soldiers × 3 meals per day
 - Fuel
 - 1 DOS Fuel = $Sum_{all vehs}(l/km_{veh type} \times #veh_{veh type}) \times 100 km$
 - General and Technical
 - Based upon Operation Staff Data Manual
 - Ammunition

Ammunition

• Current unclassified consumption rates are based upon data for open high intensity war fighting between divisions and corps. In order to take into account Peace Support and Humanitarian assistance the following matrix was developed.

			% of	days at expenditur	re rate
Expenditure of Supplies	Expenditure Factor	Description	Warfighting	Peace Support	Humanitarian
High	1	High expenditure of Ammunition	0.1	0.05	0.01
Med	0.4	Med expenditurte of Ammunition	0.5	0.3	0.1
Low	0.01	Low expenditure of Ammunition	0.4	0.65	0.899

Data Requirements

• The capability of the connectors (sea and land).

Defence R&D Canada – CORA • R & D pour la défense Canada – CARO

Data Requirements

• The number of connectors required to lift a day of supply.

Sub-unit	#MSVS	#Fuel Trailers	#Water Trailers
LAV Coy	3	1	1
LPV Coy 1	2	1	1
LPV Coy 2	2	1	1
Arty	3	1	1
Engr	3	1	1
Misc	2	1	1

Defence R&D Canada – CORA • R & D pour la défense Canada – CARO

Model Assumptions

- The seabase is considered as one entity as the type and numbers of ships are unknown at this time.
- Vertical connectors (helicopters) are too few in number to be relied upon.
- The Supply Concept
 - Landing force is re-supplied using Medium Support Vehicle System carrying Quadcons and towing fuel and water trailers, on a push concept (exchange 1 Day of Supply worth of vehicles)
 - The Medium Support Vehicle System is loaded at the sea base, transported to shore and travel to the sub-unit to be re-supplied. (no dumping on shore)

Extend Model - Level 2

Defence R&D Canada – CORA • R & D pour la défense Canada – CARO

Sample

- Legend
 - Green = 3 DOS at Sub-unit for 30 days
 - Yellow = 0 < DOS < 3 at Sub-unit for 30 days
 - Red = Sub-units at <=0 DOS in 30 days</p>

Baseline Runs

Ship every	24	hours
MSVS Load Spots	5	spots
Fuel Load Spots	2	spots
Water Load Spots	2	spots
LCU Load Spots	2	spots
LCVP Load Spots	2	spots
Beach Spots	2	spots
Number of MSVS/LCU	3	MSVS
Number of Trailers/LCVP	2	Trailers
LCU Speed	8	knots
LCVP Speed	25	knots
MSVS Speed	30	km/hr

Baseline Runs

	Shore to Unit					
Ship to						
Shore	100 km	200 km	300 km	400 km	500 km	
40 nm	Green	Green	Yellow	Yellow	Yellow	
30 nm	Green	Green	Green	Yellow	Yellow	
20 nm	Green	Green	Green	Green	Yellow	
10 nm	Green	Green	Green	Green	Yellow	

	Utilization with Sea Base at 30 nm					
Resource	100 km	200 km	300 km	400 km	500 km	
MSVS Ld Spot	0.04	0.04	0.04	0.15	0.34	
Fuel Ld Spot	0.07	0.07	0.07	0.07	0.07	
Water Ld Spot	0.07	0.07	0.07	0.07	0.07	
LCU Ld Spot	0.14	0.14	0.14	0.14	0.14	
Beach Spot	0.37	0.37	0.37	0.36	0.36	
LCVP Ld Spot	0.13	0.13	0.13	0.13	0.13	
LCU	0.42	0.42	0.42	0.41	0.39	
LCVP	0.32	0.32	0.32	0.32	0.30	
MSVS	0.53	0.53	0.60	0.81	0.87	
Fuel TIr	0.38	0.38	0.48	0.68	0.67	
Water Tlr	0.38	0.38	0.48	0.68	0.67	

Defence R&D Canada – CORA • R & D pour la défense Canada – CARO

Sensitivity to Numbers of Landing Craft

	Sea Base at 30 nm				
#LCU	100 km	200 km	300 km	400 km	500 km
3	Green	Green	Green	Yellow	Yellow
2	Yellow	Yellow	Yellow	Yellow	Yellow
1	Red	Red	Red	Red	Red

		Sea Base at 30 nm					
#LCVP	100 km	200 km	300 km	400 km	500 km		
3	Green	Green	Green	Yellow	Yellow		
2	Green	Green	Yellow	Yellow	Yellow		
1	Yellow	Yellow	Yellow	Yellow	Yellow		

	Sea Base at 30 nm					
#MSVS	100 km	200 km	300 km	400 km	500 km	
35	Green	Green	Yellow	Yellow	Red	
30	Green	Green	Yellow	Red	Red	
25	Green	Green	Yellow	Red	Red	
20	Red	Red	Red	Red	Red	

		Sea Base at 30 nm				
#Trailers	100 km	200 km	300 km	400 km	500 km	
15	Green	Green	Yellow	Yellow	Yellow	
12	Green	Green	Yellow	Red	Red	
9	Green	Green	Yellow	Red	Red	
6	Red	Red	Red	Red	Red	

Sensitivity to Speed of Convoy

1	Sea Base at 30 nm						
<u></u>							
km/h	100 km	200 km	300 km	400 km	500 km		
90	Green	Green	Green	Green	Green		
60	Green	Green	Green	Green	Green		
10	Yellow	Yellow	Red	Red	Red		

Conclusions and Recommendations

- The system, as modeled, does not provide the robustness required to sustain the landing force
 - at its potential operating distances in all locations of the seabase.
 - within an accepted number of vehicles (MSVS and trailers)
- These results were presented to the SCTF Sustainment Working Group (27 Feb – 3 Mar 06) and influenced the development of a new concept for transportation.

Future Work

- Consumption Rates
 - The Operational Staff Data manual must be updated to provide a common database of vehicle and weapons performance.
 - The methodology used to calculate consumption rates (especially ammunition) needs to be revisited.
- Modified Supply Concept
 - The model in this thesis should be modified to enable the analysis of future supply concepts.
 - Continued analysis support is required for all concept development activities in the SCTF
- Optimization
 - Use of tools to optimize the final concept of sustainment.

DEFENCE

DÉFENSE

Ե