

DÉFENSE

Using Quantitative Analysis in Support of Military Intelligence

P. Dobias, P. Eles DRDC CORA

J. Schroden CNA

J. Wanliss Presbyterian College

28th International Symposium onMilitary Operational Research29 Aug-2 Sep 2011, UK

Outline

- Context
- Data sources/considerations
- Traditional methods
 - Trends
 - Seasonality
 - Forecasting violence
 - Assessing enemy
- Fractal nature of conflicts
 - Implication of data structure
 - Multi-fractal forecasting
 - Current status of research

Context

- Providing information to enable mission planning:
 - Energy intent/capabilities
 - Terrain/Environment
 - Human terrain, culture, social structure

DEFENCE

- How to conduct assessment in the environment characterized by:
 - Lack of cultural/social/tribal/religious understanding
 - Insufficient sources of varying reliability
 - Incoherent and mutually competing

Data sources

Demographics

Afghan *Central Statistical Office* collects and disseminates varie of population stats

• Polling

According to some estimates Afg is the most polled country in the world. Kabul group, NGO's, ISAF, all conduct polls asking a variety of questions

Economics
 Many NGO
 sources provide
 info such as
 wheat/sheep
 prices or power
 usage

DEFENCE

Violence Metrics

Collected by security forces, it is one of the most reliable data sources around. Most data is stored in CIDNE (replaced JOIIS in 2010)

Concerns about data

- "One-of" reportings
 - Some organization collects data; process not repeated
 - Impossible to produce trends
- Changes in collection methodology and timing
 - Incoherent and internally inconsistent data
 - Trends of limited validity
- Lack of continuity
 - Discontinued collection
 - Data gaps
 - Limited usefulness of trends
- Multiple, often conflicting sources
- Parallel data storage
 - All mil data should be in CIDNE
 - Number of authoritative spreadsheets containing specific info
 - Difficult correlating of various data

Trends in violence

- Strong seasonality
 - Peaks in July-August
 - Lowest in December-January
 - Dips in April due to poppy season
- Long-term increase
- Concentrated along Ring-Road (populated areas)
 - Most violence in South and East

Seasonal decomposition

Seasonality in Afghanistan

- Annual cycle, difference over 50%
- Must be considered when analyzing changes
- Long-term trend

Can be used to correlate with factors that do not have seasonal components

- Methodology
 Multiplicative model X = T x S
 - Average X over one season
 - X/<X> provides raw seasonality, is used to obtain S
 - T = X / S for each point
- Assessment
 - Identification of recurrent patterns
 - Identification of long-term trend
 - Correlations with other factors (friendly activity, weather anomalies)
 - Deviations from the trend
 - Implications for the future activities

Use of violent data

Understanding enemy

- What is the enemy's intent?
- What are the enemy's capabilities?
- How does the enemy allocate resources?
- What is the enemy's refit/resupply cycle?
- How does the enemy adapt to our OPS?
- Limited value if used alone; needs supplementary info sources and qualitative analysis

- Forecasting and risk assessment
 - What violence levels are expected?
 - Management of resources (medical, materiel, personnel)
 - Based on assumption that historical trend can be projected to the future
 - Usually encapsulates some relationship between violence and other factors (e.g. troop numbers, major events)

Assessment of Insurgency

- What is the state of insurgency?
 - What are their capabilities, intent, morale?
- Model and Indicators
 - Developing a model of insurgency to identify indicators
 - Combination of violence categories:
 - Effectiveness
 - Particular attack categories
 - Ratios of particular categories
 - Target
 - Supported by other sources

- What are the insurgent resources?
 - How are they distributed?
 - Origin of resources (local/external)
- Violence as indicator
 - Particular event categories
 - Distinguish between dedicated and opportunist fighters
 - Indication of insurgent focus and intent

Forecasting

- Assumptions:
 - Past connection
 between violence and a factor X will hold
 - Seasonality will remain the same
 - Behaviour of factor X

- Deterministic vs. stochastic model
 - What are other uncertainties?
 - Is the nature of randomness known?
 - Are the trials independent?
 - Is the statistical distribution known or can it be inferred?

Fractal Structure of Violence

DEFENCE ROAD DÉFI

- Power-law
 - Fractal nature of the data is reflected in the power law distributions

5.0

4.5

Log (square deviation/trend)

5.5

6.0

- Temporal, Spatial, Event-based characteristics
- Persistence
 - A result of the memory in the system (the numbers of events at various times not independent)
 - Implies criticality or near-criticality

2.0 0.0 3.0

3.5

4.0

Multi-fractal forecasting

- Identify "trigger" threshold
 - Binary approach (below/above threshold)
 - Time between crossing threshold (waiting time)
 - Exploits universality of scaling and persistence

- Enable short term forecast:
 - More efficient resource allocation
 - Expectation management
 - Consequence management

Ongoing activities and future plans

- Fractal Properties of
 Irregular Warfare
 - Revisit scaling properties for extended data sets
 - Revisit intermittency and persistence
 - Agent-based modeling of small to large scale combat
 - Identifying key drivers of fractal behaviour

- Multi-Fractal
 Forecasting
 - Revisit persistence of expanded data sets
 - Test thresholding algorithms
 - Test multi-fractal forecasting on limited data sets
 - Test predictive power and validate on real data

Conclusions

- Quantitative analysis can provide a different perspective and additional insights into the enemy
- It cannot be a standalone activity and needs to be supplemented by qualitative assessments
- Simple, conventional methods can provide insights directing further analysis
- Advanced methods can capitalize on the internal dynamics of conflicts as complex systems

DEFENCE

DÉFENSE

6