AI algorithms and new approaches to wargame simulation

S Lucek, NSC
S Collander-Brown, Dstl
31 ISMOR
Overview

- **Mission Planner**: combat decision-making (AI) toolset
 - Supports Dstl high intensity warfighting simulations, to reduce/eliminate:
 - Complex pre-scripting
 - Human-in-the-loop

- **Stochastic Optimisation AI**
 - Genetic Programming, Simulated Annealing (novel approach)
 - Generic algorithms & architecture – Plug and Play
 - Simple application to different problems

- **Formulate the problem**: Military-like syntax
 - AI algorithms efficiently generate plans for tactical problems
 - Resemble human-like decision making

- **META model - AI generates plans** against a reduced problem set
 - Representing essential elements of the full problem.
 - Resulting solution evaluated against the full problem set
 - SimBrig assessing brigade level land engagements
 - Overcomes some of the limitations of AI techniques used
Stochastic Optimisation

- Family of techniques for solving any generalised problem
- Complex problem
 - Finds good but not guaranteed best solution
 - Explores whole solution space not just locally good solution
- Explore solution space in controlled way
 - Based on fitness measure
 - Definition of “good” can vary with user requirement
- Wide range of problems
 - Timetabling/Scheduling (travelling salesmen)
 - Game solutions (chess/soccer bots)
Genetic Algorithms

- Entity – abstract representation of a candidate solution to a problem
 - Typically bit stream
 - Decoded to a solution
 - Solution evaluated to obtain fitness measure
- Population of Entities
 - Initialise randomly
 - Evolve in generations, mutation, parent crossover & selection effects mimic survival of fittest
- End with a ‘best’ solution
- Genetic Programming
 - Ensures efficient decoding
Fitness measure

- Core of all Stochastic Optimisation algorithms
- Good measure of fitness
 - Allows algorithm to correctly apply selection pressure
 - Ensures fittest elements of population are evolved
- Each entity represents order set
 - Run through game & assess results
 - Losses
 - Achievements (positions held or denied from the enemy, or enemy losses or neutralisation)
 - Risk (enemy proximity, own units mutually supporting)
 - Efficiency (minimum resource consumption)
- SO algorithms notorious for finding loopholes
Simulated Annealing

- Well understood & efficient optimisation technique
- Candidate solution
 - Randomly perturbed for new solution
 - Probability new solution accepted:
 \[e^{-\frac{F_C - F_N}{T}} \]
 - T: “Temperature”
 - F: Fitness measure – Well understood/constrained
- Annealing Schedule
 - Initially large T – explore solution space
 - As progress – reduce T to “polish” good solution
SA: Solution Perturbation

- Problem in application to gaming problems
 - How to perturb candidate solution for new solution
 - Efficient algorithm should consider T schedule
 - Large perturbations for high T
 - Small perturbations for low T
 - Node/Input tree of GP solution easy to do this
- Perturbation
 - Node: select node in tree replace with randomly generated node tree
 - Input: change input value(s)
- High T
 - Favour Node perturbation
 - Favour Nodes with many descendants
 - Change multiple Inputs
Stochastic Optimisation: limitations

- Slow – consider many solutions
- Solutions are problem specific:
 - Only optimises based on fitness criteria
 - Excellent at novel solutions tailored to detail of problem
 - Not doctrinally correct solution found in Staff Officers Handbook
 - Exploits loopholes
 - In fitness criteria
 - In evaluation model
 - Good test for model
Mission Planner: Iterative

- Generate/evolve best solution
- Next iteration, use last iteration best solution &
 - Change side
 - Change problem scenario
 - Change AI algorithm control parameters
- Solution can be evolved against multiple scenarios
 - Must be good against each
- Solution can be seeded
 - Library of solutions
Mission Planner: Generic

- AI algorithms Generic Solution
 - Nodes and inputs have no meaning
 - No concept of problem applied to
 - Simply randomly changed

- Decoder
 - Only problem specific part
 - Translates generic node tree to order set
 - Runs evaluation model to get fitness score

- Architecture: plug and play decoders
 - Proof of Concept
 - SimBrig
 - META
 - Iterations can use different decoder
 - Generate end solution using different decoder
Military Syntax

- Military Synch Matrix
- Nodes correspond to:
 - Areas
 - Timelines
 - Orders
 - Seize, Hold etc.
 - Linked to Areas & Timelines
- Units naturally co-operate in time and space
- Efficiently generate "human-like" orders
META

- Model for EngagementT Analysis
- AI algorithms requirements for plan evaluation model
 - Fast
 - Robust
 - No logic loopholes
 - Evaluate nonsense order sets
 - AI considers bad solutions
 - Need good measure of fitness

- META Simple
 - Representing ONLY the essential elements of the full problem
 - Simple and Robust algorithms
 - Quick and cheap (3 months, 2 man team)
META

- Aggregated land model
 - Brigade level (SimBrig)
 - Algorithms at an aggregated level
 - Quickest execution speed
 - Expose the fewest loop holes in algorithm logic and application
 - Combat:
 - Lanchester-like
 - BAMS-like 2-D cross matrix of attrition rates by unit type/size
 - Handles units of differing sizes/capabilities
 - Movement, combat, detection, artillery models dependent on
 - Terrain, unit types, postures, suppression
 - Arc, node movement network (SimBrig)
 - Zones of control
 - Internode visibility
Results

- MP Demo
- META Demo
Conclusions

- “Simplicity is the ultimate sophistication”
 - Leonardo da Vinci

- AI Algorithms
 - Generic architecture – Plug and Play
 - Simple application to different problems

- Formulate the solution: Military-like syntax
 - AI algorithms efficiently generate plans for tactical problems
 - resemble human-like decision making

- Meta model - AI generates plans against a reduced problem set
 - Representing essential elements of the full problem.
 - Simple, Fast, Robust
 - Overcomes limitations of AI techniques
Dstl Conclusions

- Mission planner will allow
 - Greater range of potential solution space to be examined
 - More reactive Red allowing more robust testing of plans
 - Rapid generation of variations, examining changes in
 - Force Structure
 - Constraints
 - Improved testing of complex models